Difference between revisions of "Standard library"
(4 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
− | + | The Embedded XINU standard library contains a portion of the functions defined by the ANSI standard. The functions parallel the ANSI standard C library as closely as possible. | |
− | The Embedded XINU standard library contains a portion of the functions defined by the ANSI standard. The functions parallel the ANSI standard C library as | ||
== Input and Output <stdio.h> == | == Input and Output <stdio.h> == | ||
− | + | ||
+ | === Formatted output === | ||
+ | '''fprintf''' - print output to <code>dev</code> formatted according to the format string <code>fmt</code> | ||
+ | <br> | ||
+ | <code>int fprintf(int dev, char *fmt, ...)</code> | ||
+ | |||
+ | '''printf''' - same as <code>fprintf (CONSOLE, ...)</code> | ||
+ | <br> | ||
+ | <code>int printf(...)</code> | ||
+ | |||
+ | '''sprintf''' - same as <code>printf</code> except output is written to the string <code>str</code> | ||
+ | <br> | ||
+ | <code>int sprintf(char *str, char *fmt, ...)</code> | ||
+ | |||
+ | === Formatted input === | ||
+ | ''This portion of the library is still unstable.'' | ||
+ | |||
+ | === Character input and output === | ||
+ | '''fgetc''' - read the next character from device <code>dev</code>; return EOF if end of file or an error occurs | ||
+ | <br> | ||
+ | <code>int fgetc(int dev)</code> | ||
+ | |||
+ | '''fputc''' - write a character <code>c</code> to device <code>dev</code>; return EOF if an error occurs | ||
+ | <br> | ||
+ | <code>int fputc(int c, int dev)</code> | ||
+ | |||
+ | '''fgets''' - return a newline-terminated string <code>s</code> of maximum length <code>n</code> from device <code>dev</code>; return NULL if end of file or an error occurs | ||
+ | <br> | ||
+ | <code>char *fgets(char *s, int n, int dev)</code> | ||
+ | |||
+ | '''fputs''' - write a string <code>s</code> to device <code>dev</code>; return EOF if an error occurs | ||
+ | <br> | ||
+ | <code>int fputs(char *s, int dev)</code> | ||
+ | |||
+ | '''getchar''' - same as <code>fgetc(CONSOLE)</code> | ||
+ | <br> | ||
+ | <code>int getchar()</code> | ||
+ | |||
+ | '''putchar''' - same as <code>fputc(c,CONSOLE</code> | ||
+ | <br> | ||
+ | <code>int putchar(int c)</code> | ||
== Character Class Tests <ctype.h> == | == Character Class Tests <ctype.h> == |
Latest revision as of 21:37, 24 January 2010
The Embedded XINU standard library contains a portion of the functions defined by the ANSI standard. The functions parallel the ANSI standard C library as closely as possible.
Contents
Input and Output <stdio.h>
Formatted output
fprintf - print output to dev
formatted according to the format string fmt
int fprintf(int dev, char *fmt, ...)
printf - same as fprintf (CONSOLE, ...)
int printf(...)
sprintf - same as printf
except output is written to the string str
int sprintf(char *str, char *fmt, ...)
Formatted input
This portion of the library is still unstable.
Character input and output
fgetc - read the next character from device dev
; return EOF if end of file or an error occurs
int fgetc(int dev)
fputc - write a character c
to device dev
; return EOF if an error occurs
int fputc(int c, int dev)
fgets - return a newline-terminated string s
of maximum length n
from device dev
; return NULL if end of file or an error occurs
char *fgets(char *s, int n, int dev)
fputs - write a string s
to device dev
; return EOF if an error occurs
int fputs(char *s, int dev)
getchar - same as fgetc(CONSOLE)
int getchar()
putchar - same as fputc(c,CONSOLE
int putchar(int c)
Character Class Tests <ctype.h>
Most of the macros defined in the ctype.h
header are used to identify properties of specific ASCII characters. The macros return TRUE
if a character is a member of a particular category, otherwise the macro returns FALSE
. The following macros are defined to determine if a character has the listed property:
isalpha
- letterisupper
- uppercase letterislower
- lowercase letterisdigit
- digitisxdigit
- hexadecimal digitishexnumber
- hexadecimal digitisspace
- white spaceispunct
- punctuationisalnum
- alphanumericisprshort
- printable character that is not a letter, digit, or white spaceisprint
- printable characteriscntrl
- control characterisascii
A few macros in the ctype.h
header convert characters. These macros convert characters as follows:
toupper
- convert letter to uppercasetolower
- convert letter to lowercasetoascii
String Functions <string.h>
The header string.h
consists of functions used to compare and manipulate strings.
Str functions
The main string functions consist of:
String copy - copies string s2
to string s1
; return s1
char *strcpy(char *s1, const char *s2)
String concatenate - concatenate s2
on the end of s1
, s1
's space must be large enough; return s1
char *strcat(char *s1, const char *s2)
String compare - compares s1
and s2
; return s1>s2
: >0 s1==s2
: 0 s1<s2
: <0
int strcmp(const char *s1, const char *s2)
Character search - returns a pointer to the location in s
at which which c
appears
char *strchr (const char *s, int c)
Reverse character search - returns a pointer to the location in s at which which c
last appears
char *strrchr(const char *s, int c)
String length - returns the length of s
int strlen(const char *s)
String search - returns a pointer to the location in cs
at which ct
appears
char *strstr (const char *cs, const char *ct)
Strn functions
Some string functions are also defined with the option to specify length limitations:
String n copy - copies string s2
to string s1
, truncating or null padding to always copy n
bytes; return s1
char *strncpy(char *s1, const char *s2, int n)
String n concatenate - concatenate at most n
bytes of s2
on the end of s1
, s1
's space must be large enough; return s1
char *strncat(char *s1, const char *s2, int n)
String n compare - compares at most n
bytes of s1
and s2
; return s1>s2
: >0 s1==s2
: 0 s1<s2
: <0
int strncmp(const char *s1, const char *s2, int n)
Mem functions
The string library also includes functions for manipulating objects as character arrays:
Memory copy - copy n
bytes of memory from cs
to ct
void *memcpy(void *s, const void *ct, int n)
Memory compare - compare n
bytes of memory at locations cs
and ct
int memcmp (const void *s1, const void *s2, int n)
Memory search - returns a pointer to the location in memory at which which a c
appears, starting at cs
and searching at most n
bytes
void *memchr (const void *cs, int c, int n)
Memory set - fill n
bytes of memory with c
starting at n
void *memset (void *s, int c, int n)
Utility Functions <stdlib.h>
The stdlib.h
header contains a wide array of utility functions for number conversion, memory allocation, and sorting.
Number conversion
ASCII to integer - converts and ASCII value p
to an integer
int atoi(char *p)
ASCII to long - converts and ASCII value p
to a long
long atol(char *p)
Absolute value - returns the absolute value of the integer arg
int abs(int arg)
Long absolute value - returns the absolute value of the long arg
long abs(long arg)
Memory allocation
Calloc - returns a pointer to a memory location with space for nobj
objects each of size size
void *calloc(ulong nobj, ulong size)
Malloc - returns a pointer to a memory location with space for size
bytes
void *malloc(ulong size)
Free - deallocates a portion of memory starting at p
long free(void *p)
Miscellaneous
Zero memory - zeroes len
bytes of memory starting at p
void bzero(void *p, int len)
Random number - generates a random long
unsigned long rand(void)
Diagnostics <assert.h>
A macro ASSERT(int expression)
is defined in kernel.h
. The ASSERT
macro verifies the specified expression is true, otherwise the function containing the assert will return SYSERR
. No assert.h
header file is included in the Embedded XINU standard library.
Variable Argument Lists <stdarg.h>
Functions with a variable number of unknown type arguments rely on functions in the stdarg.h
header to obtain the arguments provided to the function. A variable of type va_list
must be defined within the function to hold the variable argument list. The variable holding the variable argument list must be initialized using the va_start(va_list ap, lastarg)
function, where lastarg
is the name of the argument prior to the variable argument list in the function signature. Arguments are obtained from the variable argument list using va_arg(va_list ap, type)
, where type
specifies the expected type of the next argument in the list. When argument reading is complete, the function va_end(va_list ap)
is called, providing the variable argument list as an argument.
Implementation-defined Limits <limits.h>
The header limits.h
defines maximum and minimum values for the integral C types. The constants defined are set according to the 32-bit Mips architecture of the supported platforms.
Char
- Bits in a character = 8
- Maximum value of a
char
= +127 - Minimum value of a
char
= -128 - Maximum value of a
signed char
= +127 - Minimum value of a
signed char
= -128 - Maximum value of an
unsigned char
(uchar
) = 255
Int
- Maximum value of an
int
= +2147483647 - Minimum value of an
int
= -2147483648 - Maximum value of an
unsigned int
= 4294967295
Long
- Maximum value of a
long
= +2147483647 - Minimum value of a
long
= -2147483648 - Maximum value of an
unsigned long
(ulong
) = 4294967295
Short
- Maximum value of a
short
= +32767 - Minimum value of a
short
= -32768 - Maximum value of an
unsigned short
(ushort
) = 65535
Not Implemented Headers
Some of the ANSI standard library headers are not included in the XINU standard library. Some headers have been noted as possible later additions:
signal.h
- provides functionality for handling conditions that arise during execution including termination and error conditionstime.h
- provides functions for date and time formatting and determining current date and time; dates and times are not currently used in Embedded XINU, but would be more useful after the network driver is complete and Embedded XINU is able to synchronize with an time server.
The following headers have been excluded due to architectural limitations and lack of feasibility:
math.h
float.h
setjmp.h
locale.h
errno.h
stddef.h
References
- Brian Kernighan and Dennis Ritchie. The C Programming Language, second edition. Prentice Hall.